Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 382
Filter
2.
Gastroenterology ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38604542

ABSTRACT

The only proven treatment for celiac disease is adherence to a strict, lifelong, gluten-free diet. However, complete dietary gluten avoidance is challenging and a substantial number of patients do not respond fully, clinically, or histologically, despite their best efforts. As celiac disease is common and its central pathophysiology is well elucidated, it has become attractive for drug development to address the limitations of dietary treatment. Most efforts address nonresponsive celiac disease, defined as continued symptoms and/or signs of disease activity despite a gluten-free diet, including the more severe forms of refractory celiac disease, types I and II. An increasing spectrum of therapeutic approaches target defined mechanisms in celiac disease pathogenesis and some have advanced to current phase 2 and 3 clinical studies. We discuss these approaches in terms of potential efficiency, practicability, safety, and need, as defined by patients, regulatory authorities, health care providers, and payors.

3.
Aliment Pharmacol Ther ; 59(10): 1212-1222, 2024 May.
Article in English | MEDLINE | ID: mdl-38462919

ABSTRACT

BACKGROUND: The current management of metabolic dysfunction-associated steatotic liver disease (MASLD) relies on lifestyle intervention. Prior studies have shown that nutritional wheat amylase trypsin inhibitors (ATI) activate toll-like receptor 4 on intestinal myeloid cells to enhance intestinal and extra-intestinal inflammation, including the promotion of murine MASLD, insulin resistance and liver fibrosis. AIMS: We aimed to assess the impact of ATI (gluten)-free diet in liver as well as metabolic parameters of biopsy-proven MASLD patients. METHODS: We performed a 6-week, proof-of-concept 1:1 randomised controlled trial of an ATI-free diet. The controls followed a balanced diet recommended by the German Nutrition Society. We assessed changes in controlled attenuation parameter (CAP), body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR). Patient-reported outcomes were assessed by the CLDQ-NASH questionnaire. Forty-five patients were consecutively enrolled (21 in the intervention arm and 24 in the control arm). RESULTS: Three patients from each arm discontinued the study. In the ATI-free diet group, a significant decrease in BMI (p = 0.018), CAP (p = 0.018) and HOMA-IR (p = 0.042) was observed at 6 weeks. The mean difference in CAP between the two arms at week 6 was 30.5 dB/m (p = 0.039), with a delta significantly higher in the ATI-free diet group (p = 0.043). Only an ATI-free diet could achieve a significant improvement in CLDQ-NASH domains (p value for total scoring: 0.013). CONCLUSIONS: A short-term ATI-free diet leads to significant improvements in liver and metabolic parameters, as well as patient-reported outcomes with good tolerability. A larger follow-up study is justified to corroborate these findings. CLINICAL TRIAL NUMBER: NCT04066400.


Subject(s)
Diet, Gluten-Free , Insulin Resistance , Proof of Concept Study , Humans , Female , Male , Middle Aged , Insulin Resistance/physiology , Adult , Body Mass Index , Fatty Liver/diet therapy , Aged , Glutens , Non-alcoholic Fatty Liver Disease/diet therapy
4.
Redox Biol ; 70: 103071, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354629

ABSTRACT

AIMS: We examined the cardiovascular effects of celiac disease (CeD) in a humanized mouse model, with a focus on vascular inflammation, endothelial dysfunction, and oxidative stress. METHODS AND RESULTS: NOD.DQ8 mice genetically predisposed to CeD were subjected to a diet regime and oral gavage to induce the disease (gluten group vs. control). We tested vascular function, confirmed disease indicators, and evaluated inflammation and oxidative stress in various tissues. Plasma proteome profiling was also performed. CeD markers were confirmed in the gluten group, indicating increased blood pressure and impaired vascular relaxation. Pro-inflammatory genes were upregulated in this group, with increased CD11b+ myeloid cell infiltration and oxidative stress parameters observed in aortic and heart tissue. However, heart function remained unaffected. Plasma proteomics suggested the cytokine interleukin-17A (IL-17A) as a link between gut and vascular inflammation. Cardiovascular complications were reversed by adopting a gluten-free diet. CONCLUSION: Our study sheds light in the heightened cardiovascular risk associated with active CeD, revealing a gut-to-cardiovascular inflammatory axis potentially mediated by immune cell infiltration and IL-17A. These findings augment our understanding of the link between CeD and cardiovascular disease providing clinically relevant insight into the underlying mechanism. Furthermore, our discovery that cardiovascular complications can be reversed by a gluten-free diet underscores a critical role for dietary interventions in mitigating cardiovascular risks associated with CeD.


Subject(s)
Celiac Disease , Hypertension , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-17/pharmacology , Mice, Inbred NOD , Oxidative Stress , Inflammation , Glutens/pharmacology
6.
J Hepatol ; 80(2): 335-351, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879461

ABSTRACT

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Liver/pathology , Artificial Intelligence , Biopsy , Prevalence
8.
Front Immunol ; 14: 1277808, 2023.
Article in English | MEDLINE | ID: mdl-38116017

ABSTRACT

During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Esophageal and Gastric Varices , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Esophageal and Gastric Varices/metabolism , Esophageal and Gastric Varices/pathology , Liver Neoplasms/pathology , Gastrointestinal Hemorrhage , Liver Cirrhosis , Macrophages , Fibrosis
9.
Cells ; 12(22)2023 11 13.
Article in English | MEDLINE | ID: mdl-37998354

ABSTRACT

AIM: The semisynthetic derivatives MePip-SF5 and isogarcinol, which are aligned with the natural products curcumin and garcinol, were tested for their antitumor effects in a preclinical model of pulmonary melanoma metastasis. METHODS AND RESULTS: MePip-SF5 was almost five times more effective in inhibiting B16F10 melanoma cell proliferation than its original substance of curcumin (IC50 MePip-SF5 2.8 vs. 13.8 µM). Similarly, the melanoma cytotoxicity of isogarcinol was increased by 40% compared to garcinol (IC50 3.1 vs. 2.1 µM). The in vivo toxicity of both drugs was assessed in healthy C57BL/6 mice challenged with escalating doses. Isogarcinol induced toxicity above a dose of 15 mg/kg, while MePip-SF5 showed no in vivo toxicity up to 60 mg/kg. Both drugs were tested in murine pulmonary metastatic melanoma. C57BL/6 mice (n = 10) received 500,000 B16F10 melanoma cells intravenously. After intraperitoneal injection of MePip-SF5 (60 mg/kg) or isorgarcinol (15 mg/kg) at days 8, 11 and 14 and sacrifice at day 16, the MePip-SF5-treated mice showed a significantly (p < 0.05) lower pulmonary macroscopic and microscopic tumor load than the vehicle-treated controls, whereas isogarcinol was ineffective. The pulmonary RNA levels of the mitosis marker Bub1 and the inflammatory markers TNFα and Ccl3 were significantly (p < 0.05) reduced in the MePip-SF5-treated mice. Both drugs were well tolerated, as shown by an organ inspection and normal liver- and kidney-related serum parameters. CONCLUSIONS: The novel curcuminoid MePip-SF5 showed a convincing antimetastatic effect and a lack of systemic toxicity in a relevant preclinical model of metastasized melanoma.


Subject(s)
Curcumin , Lung Neoplasms , Melanoma , Animals , Mice , Curcumin/pharmacology , Curcumin/therapeutic use , Diarylheptanoids/therapeutic use , Mice, Inbred C57BL , Melanoma/drug therapy , Melanoma/pathology , Lung Neoplasms/pathology
10.
Front Immunol ; 14: 1253649, 2023.
Article in English | MEDLINE | ID: mdl-37818371

ABSTRACT

Introduction: Scurfy mice have a complete deficiency of functional regulatory T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired immune homeostasis results in a lethal lymphoproliferative disorder affecting multiple organs, including the liver. The autoimmune pathology in scurfy mice is in part accompanied by autoantibodies such as antinuclear antibodies (ANA). ANA are serological hallmarks of several autoimmune disorders including autoimmune liver diseases (AILD). However, the underlying pathogenesis and the role of Treg in AILD remain to be elucidated. The present study therefore aimed to characterize the liver disease in scurfy mice. Methods: Sera from scurfy mice were screened for ANA by indirect immunofluorescence assay (IFA) and tested for a wide range of AILD-associated autoantibodies by enzyme-linked immunosorbent assay, line immunoassay, and addressable laser bead immunoassay. CD4+ T cells of scurfy mice were transferred into T cell-deficient B6/nude mice. Monoclonal autoantibodies from scurfy mice and recipient B6/nude mice were tested for ANA by IFA. Liver tissue of scurfy mice was analyzed by conventional histology. Collagen deposition in scurfy liver was quantified via hepatic hydroxyproline content. Real-time quantitative PCR was used to determine fibrosis-related hepatic gene expression. Hepatic immune cells were differentiated by flow cytometry. Results: All scurfy mice produced ANA. AILD-associated autoantibodies, predominantly antimitochondrial antibodies, were detected at significantly higher levels in scurfy sera. CD4+ T cells from scurfy mice were sufficient to induce anti-dsDNA autoantibodies and ANA with an AILD-related nuclear envelope staining pattern. Liver histology revealed portal inflammation with bile duct damage and proliferation, as in primary biliary cholangitis (PBC), and interface hepatitis with portal-parenchymal necroinflammation, as found in autoimmune hepatitis (AIH). In scurfy liver, TNFα and fibrosis-related transcripts including Col1a1, Timp1, Acta2, Mmp2, and Mmp9 were upregulated. The level of proinflammatory monocytic macrophages (Ly-6Chi) was increased, while M2-type macrophages (CD206+) were downregulated compared to wildtype controls. Despite severe hepatic inflammation, fibrosis did not develop within 25 days, which is close to the lifespan of scurfy mice. Discussion: Our findings suggest that Treg-deficient scurfy mice spontaneously develop clinical, serological, and immunopathological characteristics of AILD with overlapping features of PBC and AIH.


Subject(s)
Connective Tissue Diseases , Hepatitis, Autoimmune , Liver Diseases , Mice , Animals , T-Lymphocytes, Regulatory , Mice, Nude , Autoantibodies , Liver Diseases/metabolism , Fibrosis , Connective Tissue Diseases/metabolism , Syndrome , Inflammation/metabolism
11.
NPJ Sci Food ; 7(1): 43, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612428

ABSTRACT

The prevalence of hypersensitivities towards wheat has increased in the last decades. Apart from celiac disease these include allergic and other inflammatory reactions summarized under the term non-celiac wheat sensitivity. One suspected trigger is the family of amylase/trypsin-inhibitors (ATIs), non-gluten proteins that are prominent wheat allergens and that activate the toll-like receptor 4 on intestinal immune cells to promote intestinal and extra-intestinal inflammation. We therefore quantified 13 ATIs in 60 German hexaploid winter wheat cultivars originating from 1891 to 2010 and harvested in three years by targeted liquid chromatography-tandem mass spectrometry combined with stable isotope dilution assay using specific marker peptides as internal standards. The total ATI content and that of the two major ATIs 0.19 and CM3 did not change from old cultivars (first registered from 1891 to 1950) to modern cultivars (1951-2010). There were also no significant changes in ATI distribution.

12.
Gut ; 73(1): 92-104, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37595983

ABSTRACT

OBJECTIVE: Wheat has become a main staple globally. We studied the effect of defined pro-inflammatory dietary proteins, wheat amylase trypsin inhibitors (ATI), activating intestinal myeloid cells via toll-like receptor 4, in experimental autoimmune encephalitis (EAE), a model of multiple sclerosis (MS). DESIGN: EAE was induced in C57BL/6J mice on standardised dietary regimes with defined content of gluten/ATI. Mice received a gluten and ATI-free diet with defined carbohydrate and protein (casein/zein) content, supplemented with: (a) 25% of gluten and 0.75% ATI; (b) 25% gluten and 0.19% ATI or (c) 1.5% purified ATI. The effect of dietary ATI on clinical EAE severity, on intestinal, mesenteric lymph node, splenic and central nervous system (CNS) subsets of myeloid cells and lymphocytes was analysed. Activation of peripheral blood mononuclear cells from patients with MS and healthy controls was compared. RESULTS: Dietary ATI dose-dependently caused significantly higher EAE clinical scores compared with mice on other dietary regimes, including on gluten alone. This was mediated by increased numbers and activation of pro-inflammatory intestinal, lymph node, splenic and CNS myeloid cells and of CNS-infiltrating encephalitogenic T-lymphocytes. Expectedly, ATI activated peripheral blood monocytes from both patients with MS and healthy controls. CONCLUSIONS: Dietary wheat ATI activate murine and human myeloid cells. The amount of ATI present in an average human wheat-based diet caused mild intestinal inflammation, which was propagated to extraintestinal sites, leading to exacerbation of CNS inflammation and worsening of clinical symptoms in EAE. These results support the importance of the gut-brain axis in inflammatory CNS disease.


Subject(s)
Multiple Sclerosis , Humans , Animals , Mice , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/chemistry , Triticum/chemistry , Amylases , Leukocytes, Mononuclear , Mice, Inbred C57BL , Inflammation , Central Nervous System , Glutens , Diet
13.
Stem Cell Reports ; 18(8): 1555-1572, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37557073

ABSTRACT

This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.


Subject(s)
Liver Diseases , Regenerative Medicine , Humans , Regenerative Medicine/methods , Stem Cell Transplantation , Liver Diseases/therapy , Liver Diseases/metabolism , Liver/metabolism , Hepatocytes
14.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445994

ABSTRACT

The enzyme transglutaminase 2 (TG2) plays a key role in celiac disease (CeD) pathogenesis. Active TG2 is located mainly extracellularly in the lamina propria but also in the villous enterocytes of the duodenum. The TG2 inhibitor ZED1227 is a promising drug candidate for treating CeD and is designed to block the TG2-catalyzed deamidation and crosslinking of gliadin peptides. Our aim was to study the accumulation of ZED1227 after oral administration of the drug. We studied duodenal biopsies derived from a phase 2a clinical drug trial using an antibody that detects ZED1227 when bound to the catalytic center of TG2. Human epithelial organoids were studied in vitro for the effect of ZED1227 on the activity of TG2 using the 5-biotin-pentylamine assay. The ZED1227-TG2 complex was found mainly in the villous enterocytes in post-treatment biopsies. The signal of ZED1227-TG2 was strongest in the luminal epithelial brush border, while the intensity of the signal in the lamina propria was only ~20% of that in the villous enterocytes. No signal specific to ZED1227 could be detected in pretreatment biopsies or in biopsies from patients randomized to the placebo treatment arm. ZED1227-TG2 staining co-localized with total TG2 and native and deamidated gliadin peptides on the enterocyte luminal surface. Inhibition of TG2 activity by ZED1227 was demonstrated in epithelial organoids. Our findings suggest that active TG2 is present at the luminal side of the villous epithelium and that inhibition of TG2 activity by ZED1227 occurs already there before gliadin peptides enter the lamina propria.


Subject(s)
Celiac Disease , Glutens , Humans , Protein Glutamine gamma Glutamyltransferase 2 , Enterocytes/metabolism , Gliadin , Transglutaminases/metabolism , Peptides
15.
BMJ Open Gastroenterol ; 10(1)2023 07.
Article in English | MEDLINE | ID: mdl-37433685

ABSTRACT

OBJECTIVE: Stellate cells are responsible for liver and pancreas fibrosis and strictly correlate with tumourigenesis. Although their activation is reversible, an exacerbated signalling triggers chronic fibrosis. Toll-like receptors (TLRs) modulate stellate cells transition. TLR5 transduces the signal deriving by the binding to bacterial flagellin from invading mobile bacteria. DESIGN: Human hepatic and pancreatic stellate cells were activated by the administration of transforming growth factor-beta (TGF-ß). TLR5 was transiently knocked down by short-interference RNA transfection. Reverse Transcription-quantitativePCR and western blot were performed to analyse the transcript and protein level of TLR5 and the transition players. Fluorescence microscopy was performed to identify these targets in spheroids and in the sections of murine fibrotic liver. RESULTS: TGF-ß-activated human hepatic and pancreatic stellate cells showed an increase of TLR5 expression. TLR5 knockdown blocked the activation of those stellate cells. Furthermore, TLR5 busted during murine liver fibrosis and co-localised with the inducible Collagen I. Flagellin suppressed TLR5, COL1A1 and ACTA2 expression after the administration of TGF-ß. Instead, the antagonist of TLR5 did not block the effect of TGF-ß. Wortmannin, a specific AKT inhibitor, induced TLR5 but not COL1A1 and ACTA2 transcript and protein level. CONCLUSION: TGF-ß-mediated activation of hepatic and pancreatic stellate cells requires the over-expression of TLR5. Instead, its autonomous signalling inhibits the activation of the stellate cells, thus prompting a signalling through different regulatory pathways.


Subject(s)
Flagellin , Pancreatic Stellate Cells , Toll-Like Receptor 5 , Animals , Humans , Mice , Flagellin/pharmacology , Liver Cirrhosis , Toll-Like Receptor 5/metabolism
16.
Ther Adv Neurol Disord ; 16: 17562864231170928, 2023.
Article in English | MEDLINE | ID: mdl-37384112

ABSTRACT

Background: Western lifestyle has been associated with an increase in relapsing-remitting multiple sclerosis (RRMS). In mice, dietary wheat amylase-trypsin inhibitors (ATIs) activate intestinal myeloid cells and augment T cell-mediated systemic inflammation. Objective: The aim of this study was to assess whether a wheat- and thus ATI-reduced diet might exert beneficial effects in RRMS patients with modest disease activity. Methods: In this 6-month, crossover, open-label, bicentric proof-of-concept trial, 16 RRMS patients with stable disease course were randomized to either 3 months of a standard wheat-containing diet with consecutive switch to a > 90% wheat-reduced diet, or vice versa. Results: The primary endpoint was negative, as the frequency of circulating pro-inflammatory T cells did not decrease during the ATI-reduced diet. We did, however, observe decreased frequencies of CD14+ CD16++ monocytes and a concomitant increase in CD14++ CD16- monocytes during the wheat-reduced diet interval. This was accompanied by an improvement in pain-related quality of life in health-related quality of life assessed (SF-36). Conclusion: Our results suggest that the wheat- and thus ATI-reduced diet was associated with changes in monocyte subsets and improved pain-related quality of life in RRMS patients. Thus, a wheat (ATI)-reduced diet might be a complementary approach accompanying immunotherapy for some patients. Registration: German Clinical Trial Register (No. DRKS00027967).

17.
iScience ; 26(5): 106724, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216121

ABSTRACT

Mycoplasma infection leads to false and non-reproducible scientific data and poses a risk to human health. Despite strict guidelines calling for regular mycoplasma screening, there is no universal and widely established standard procedure. Here, we describe a reliable and cost-effective PCR method that establishes a universal protocol for mycoplasma testing. The applied strategy utilizes ultra-conserved eukaryotic and mycoplasma sequence primers covering by design 92% of all species in the six orders of the class Mollicutes within the phylum Mycoplasmatota and is applicable to mammalian and many non-mammalian cell types. This method can stratify mycoplasma screening and is suitable as a common standard for routine mycoplasma testing.

18.
Cancers (Basel) ; 15(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37046731

ABSTRACT

Improved serological biomarkers are needed for the early detection, risk stratification and treatment surveillance of patients with oral squamous cell carcinoma (OSCC). We performed an exploratory study using advanced, highly specific, DNA-aptamer-based serum proteomics (SOMAscan, 1305-plex) to identify distinct proteomic changes in patients with OSCC pre- vs. post-resection and compared to healthy controls. A total of 63 significantly differentially expressed serum proteins (each p < 0.05) were found that could discriminate between OSCC and healthy controls with 100% accuracy. Furthermore, 121 proteins were detected that were significantly altered between pre- and post-resection sera, and 12 OSCC-associated proteins reversed to levels equivalent to healthy controls after resection. Of these, 6 were increased and 6 were decreased relative to healthy controls, highlighting the potential relevance of these proteins as OSCC tumor markers. Pathway analyses revealed potential pathophysiological mechanisms associated with OSCC. Hence, quantitative proteome analysis using SOMAscan technology is promising and may aid in the development of defined serum marker assays to predict tumor occurrence, progression and recurrence in OSCC, and to guide personalized therapies.

19.
Front Allergy ; 4: 1066392, 2023.
Article in English | MEDLINE | ID: mdl-36873048

ABSTRACT

The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO-) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO- and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO--induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment.

20.
Hepatology ; 78(1): 258-271, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36994719

ABSTRACT

BACKGROUND AND AIMS: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. APPROACH AND RESULTS: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). CONCLUSIONS: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , Liver/pathology , Fibrosis , Algorithms , Biomarkers , Machine Learning , Biopsy , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...